
Real-World Evolution of Robot Morphologies:
A Proof of Concept

Milan Jelisavcic1 Matteo de Carlo1 Elte Hupkes2

Panagiotis Eustratiadis1 Jakub Orlowski3 Evert Haasdijk1

Joshua E. Auerbach4

A.E. Eiben1

1Vrije Universiteit Amsterdam, Amsterdam, Netherlands

2Universiteit van Amsterdam, Amsterdam, Netherlands

3University of Warsaw, Warsaw, Poland

4Champlain College, Burlington, VT, USA

m.j.jelisavcic@vu.nl matteo.dek@gmail.com peustratiadis@gmail.com j.orlowski@student.uw.edu.pl

e.haasdijk@vu.nl jauerbach@champlain.edu a.e.eiben@vu.nl

February 12, 2024

Abstract
Abstract: Evolutionary robotics using real hardware has been almost exclusively

restricted to evolving robot controllers, but the technology for evolvable morphologies
is advancing quickly. In this paper we discuss a proof of concept study to demonstrate
real robots that can reproduce. Following a general system plan we implement a robotic
habitat that contains all system components in the simplest possible form. We create
an initial population of two robots and run a complete life cycle resulting in a new
robot, parented by the first two. Even though the individual steps are simplified to the
maximum, the whole system validates the underlying concepts and provides a generic
work-flow for the creation of more complex incarnations. This hands-on experience
provides insights and helps us elaborate on interesting research directions for future
development.

Keywords: evolutionary robotics, embodied evolution, modular robots, artificial
life

1



1 Introduction

The work described in this paper forms a stepping stone towards the grand vision of the
Evolution of Things as outlined in [13]. The essence of this vision is to construct, study,
and utilise artificial evolutionary systems in physical substrates, i.e., in the real world, not
in digital worlds in computer simulations. There are various possible avenues towards this
goal including chemical, biological, and robotic approaches [12]. This study falls in the latter
category; the long term goal is to build robots that can evolve in real hardware [15].

The motivational scenario is that of a physical habitat where a group of robots operates:
evolves, learns, and ‘works’ [16]. The underlying system architecture is based on a model of
the robotic life cycle as outlined in [17]. This model describes a cycle not from birth to death,
but from conception (being conceived) to conception (conceiving an offspring). The cycle
consists of three main stages: morphogenesis, infancy, and mature life. Our system does not
contain a centralized evolution manager to monitor the fitness of population members and
to perform selection. This feature sets it apart from other studies on evolving morphologies
of real robots. Work in this line of research was pioneered by Lipson and Pollack [30], and
more recently followed by the RoboGen system of Auerbach et al. [1] who ran evolution in
simulation and constructed the end result of a given evolutionary experiment: one robot, in
real hardware. Broadback et al. also used a genetic algorithm to evolve robot designs, but
in contrast to [30] and [1] all fitness evaluations were performed in hardware, one at a time.
When evaluating a new genotype, the corresponding robot phenotype was constructed and
tested, and the measured fitness value was passed back to the GA running on a desktop
computer [6]. Our system model differentiates itself in the following ways:

• The robots (population members) exist and operate concurrently in the same real world
habitat.

• There is no centrally orchestrated selection-reproduction cycle, ‘birth’ events and ‘death’
events can take place independently.

• Robots are evaluated continuously, mate selection is performed by the robots them-
selves (two robots can agree to parent a child if they pass each others selection thresh-
old), survivor selection is performed by the environment (robots can break or run out
of energy, thus becoming subject for removal and recycling).

Furthermore, we consider robots that have sensors (those in [30] and [6] do not) and can
learn (those in [1] cannot, all of their properties are inheritable / evolvable).

The main contributions of this paper are the following. First, we describe and discuss
a system architecture for physically evolving robot populations, based on the previously

2



published Triangle of Life model [17]. We position our system with respect to existing
work and elaborate on options for implementation. Second, we describe a proof of concept
implementation to demonstrate how the three stages of the generic model can be realized,
be it in a simplified form, and connected into one life cycle. To be specific, we start with
a couple of robot genotypes and 1) construct the physical robots (the phenotypes) specified
by these genotypes, 2) have these robots undergo a basic gait learning process and become
adults, 3) let the adult robots mate, thus creating a new robot genotype, and 4) construct
the robot specified by this genotype. This last step closes the loop and extends the robot
population with a child. Third, we review the lessons learned from this project and identify
important issues for further research and development.

2 Related Work

Evolutionary Robotics is the combination of evolutionary computing and robotics [4,10,11,
18,34,39,40,42]. The field “aims to apply evolutionary computation techniques to evolve the
overall design, or controllers, or both, for real and simulated autonomous robots” [40]. This
approach is “useful both for investigating the design space of robotic applications and for
testing scientific hypotheses of biological mechanisms and processes” [18]. However, as noted
in [4] “the use of meta-heuristics [i.e., evolution] sets this sub-field of robotics apart from the
mainstream of robotics research”, which “aims to continuously generate better behaviour
for a given robot, while the long-term goal of Evolutionary Robotics is to create general,
robot-generating algorithms”. This provides the context for our work that aims to employ
on-line evolution in real-time and real-space to deliver robot morphologies and controllers
suited for a given environment.

One of the long-standing challenges in evolutionary robotics is the reality gap: the effect
that solutions evolved in simulation do not work well once transferred onto the real system.
The reason for this is that simulations are prone to hidden biases, errors and simplifications
in the underlying models and that EAs are likely to exploit the features of the (simulated)
environment, even if they lack physical plausibility. Approaches to cope with this problem
include the classic “envelope of noise” [24], as well as more recent techniques for improving
simulators, such as exploiting experiments with the physical robot [20, 46] and the use of a
“transferability function” to predict the limits of the simulation [27]. Such approaches to
closing the reality gap depart from simulated evolution and bring the physical robot into the
evolutionary loop [22].

Alternatively, the reality gap can be completely circumvented by abandoning simulators
altogether—successful experiments in 1990s thus evaluated the performance of each controller
using a physical robot in a real-world arena. A promising approach to scale up to more

3



complex behaviours is to use a population of robots, instead of a single one [5, 43]; in such
a situation, several evaluations occur in parallel, and therefore the evolutionary process can
theoretically be sped up by a factor equal to the number of robots. However, in all such
works only the controllers evolve and any real-world fitness evaluations take place on a fixed
robot morphology.

There are a handful studies related to flexible morphologies. The Symbrion project did
target flexible morphologies by developing robot units that could aggregate to form multi-
cellular robotic organisms and then disaggregate again [29]. However, Symbrion organisms
were transient constructs in that organisms could not reproduce and there was no evolution
of morphologies; only the controllers were evolvable. Systems within Artificial Life have
addressed the evolution of morphologies (and control systems) in simulated worlds with
virtual creatures, e.g., in the pioneering works by Sims, Bongard, and Pfeifer and several
subsequent studies [1,7]. This was brought closer to the physical by jointly evolving robotic
shapes and control in a simulator and 3D printing the evolved shapes [31]. However, only the
final product was materialised; furthermore the robot had no sensors. The self-reproducing
machines of Zykov et al. were modular robots that were designed or evolved to be able to
make exact clones of themselves without variation and they did not undergo evolution in
the real world [47, 48]. More recent work has evolved morphologies composed of novel, soft
materials, but once again only the final morphologies were constructed and in this case they
were confined to operating within a pressurised chamber, rather than operating in a real
world population [23]. A related sub-field of evolutionary design has concerned itself with
constructible objects, but here again evolution generally has taken place in software, with
only the end result being constructed. A few projects employed fitness evaluations on the
hardware itself, but these systems produced inert objects with no controllers that passively
underwent evolution by a traditional evolutionary algorithm [28,36].

A separate category of related work contains biologically motivated studies with evolution
implemented in populations of robots [19,41]. Using real hardware is extremely challenging
and to the best of our knowledge, there has been only one successful project, that of Long et
al. investigating the evolution of vertebrae through swimming robot fish [8,32]. The project
faced huge practical problems, for instance, manual construction of new generations took
weeks and the team could only run a few experiments of a few generations each.

Finally, let us mention the two most important pieces of prior work for our project. The
RoboGen system features modular robots as phenotypes, a corresponding space of genotypes
that specify the morphology and the controller of a robot, and a simulator that can simulate
the behaviour of one single robot in a given environment [1]. Evolution is implemented by a
classic evolutionary algorithm that maintains a population of genotypes, executes selection,
crossover and mutation, and calls the simulator for each fitness evaluation. The system is ap-

4



plied to evolve robots in simulation and physical counterparts of the simulated robots can be
easily constructed by 3D printing and manually assembling their components. RoboGen was
not meant to and has never been used to physically create each robot during an evolutionary
process. The project that resembles ours the most concerns a “model-free implementation
for the artificial evolution of physical systems” [6]. The robots are constructed from cubic
modules that can be passive or active (driven by a servo). The robots do not have sen-
sors and are driven by an external PC that communicates via Bluetooth. The evolutionary
process is conducted by a centralised evolutionary algorithm running on the external PC in
the same manner as in RoboGen. However, robot phenotypes are not tested in simulation,
but constructed one at the time in real hardware for fitness evaluation, where fitness is the
travelled distance in a given time interval.

3 Robot Evolution in Real-Time and Real-Space

Robot evolution in real-time and real-space requires an appropriate system architecture. To
distinguish different options and to position our system let us consider three attributes and
a couple of specific schemes to illustrate the matter.

Physical vs. virtual evaluations. The majority of evolutionary robotics follows Scheme A
shown in Figure 1 where the complete evolutionary process takes place in simulation.
A handful of systems are based on Scheme B where some (usually not all) fitness
evaluations are performed on real hardware.

On-line vs. off-line evolution. 1 Evolutionary robotics mostly employs evolution in an
off-line fashion, i.e., robots are evolved in the design stage and do not evolve further
after deployment. The alternative is on-line evolution, a.k.a. embodied evolution [44],
where robots undergo evolution during their operational period, see Scheme C and
Scheme D in Figure 1.

Morphology vs. controller evolution. Most papers in ER address the evolution of good
controllers for given robot morphologies. Alternatively, the morphologies of the robots
can be evolvable as well. In this case, morphologies and controllers evolve together.

In terms of these three attributes we can identify our system of interest as an on-line
evolutionary system working with real robots for evolving morphologies. Although it can
be argued that these attributes are not fully independent, it is helpful to visualize them as

1In general, we can distinguish the design stage and the operational stage of robots, separated by the
moment of deployment. See Chapter 17 in [14] and [15] for a further discussion.

5



dimensions resulting in a cube as shown in Figure 2. In this cube our envisioned system
sits in the upper-right-rear corner opposite the huge majority of existing work in evolution-
ary robotics in the lower-left-front corner. The specific details are discussed in the next
subsection.

3.1 System Design

A general architecture for evolving robots in real-time and real-space has been provided
by the conceptual framework named the Triangle of Life [17]. This framework describes a
life cycle that does not run from birth to death, but from conception (being conceived) to
conception (conceiving one or more children) and it is repeated over and over again, thus
creating consecutive generations of robots. The result is a population of robots that evolves
and thus adapts to the given environment. In the following we elaborate on this basic triangle
and extend it with more details for a tangible implementation.

It is important to note that evolutionary robots in the future could self-reproduce au-
tonomously without humans-in-the-loop. Therefore, we argue that distributed reproduction
mechanisms (e.g., self-assembly or robotic equivalents of eggs and pregnancy) should be
avoided and a safe system should have a central ‘kill switch’ to stop reproduction if neces-
sary. To this end we choose to use a unique system component for the construction of new
robots, cf. the Production Centre described below.

The Triangle of Life consists of three stages, Morphogenesis, Infancy, and Mature Life
as illustrated in Figure 3. A specific implementation consists of three components: the
Production Centre, the Training Centre, and the Arena that represents the world where
the robots operate. The Production Centre constructs robot phenotypes as specified by the
given genotypes. New robots start as ‘infants’ in the Training Centre. Here they learn to
control their own body (which may be different from the bodies of their parents) and to
perform basic tasks under supervision—monitored by a camera + computer system and/or
a human user. If a robot acquires the required set of skills it is declared an adult and enters
the Arena where it must survive, reproduce, and perform user-defined tasks; otherwise it is
removed and recycled. The Training Centre increases the chances of success in the Arena
and plays an important evolutionary role: it prevents reproduction of poorly performing
robots. Lifetime learning continues in the Arena, but now without centralised supervision,
autonomously. Reproduction is driven by a mate selection mechanism (innate to the robots
or executed by the human breeder) to identify two or more robots for parenting a child. The
parents transmit their own genomes to the Production Centre where the genomes undergo
crossover and mutation and the resulting new genome is used to construct a child robot.

Based on this generic design, we can now specify the ingredients of our on-line evolution-

6



ary system working with real robots for evolving morphologies as follows.

1. A robot design and a genetic code that can specify such robots.

2. A construction procedure that starts with a genotype (code for a certain robot) and
ends with a phenotype, a physical robot designated by the given genotype. This
implements morphogenesis in the Production Centre.

3. A learning method for infant robots to learn to use their own body adequately. This
belongs to the infancy stage in the Training Centre.

4. A reproduction mechanism that regulates mate selection and recombination of the
parental genomes. This is the minimum to implement mature life in the Arena.

Obviously, the specific robot design and the construction procedure are closely related. A
straightforward idea is to use rapid prototyping (3D-printing) in the Production Centre. The
technology of 3D-printers that can produce a fully functional robot is developing quickly, but
it is still in an early stage [33,45]. To mitigate this problem we have chosen the robot design
featured in RoboGen, which combines 3D-printed components with prefabricated modules
(e.g., CPUs, servos, batteries), and obtains the targeted robot by hand-assembling the parts
according to the specification in the genome. This will be described in the next section.

We strive for simplicity in other components as well for the purpose of the proof-of-
concept. For instance, all we require in the Training Centre is to learn a good gait for
the given body and we do not implement a task to be performed in the Arena. From
this perspective, our system will be natural: the sole purpose of the robots is survival
and reproduction. As shown in [5] such systems can exhibit very interesting evolutionary
dynamics, even if only the controllers are evolvable. The relevant details for our system will
be explained in Section 5.

4 Design Decisions and Exploratory Experiments

This section sets out the major design decisions that provide the basis for the implementation
as presented in section 5. To validate the choice of physical substrate (outlined in section
4.1), we performed exploratory experiments that consider the evolution of morphologies in
an on-line setting. Secondly, we performed a set of experiments as a basis for selecting a
suitable method for on-line learning of robot gaits in arbitrary morphologies.

Experimentation with real hardware consumes a lot of time and resources; therefore,
we rely on simulation to test our ideas and inform our design decisions. These exploratory

7



experiments rely on the Revolve simulator that was developed specifically for the simulation
of collectives of modular robots comprised of RoboGen [1] modules. Revolve is based on the
Gazebo simulator and implements a set of extensions tools that aim to provide a convenient
way to set up this kind of experiments. Source code for the revolve simulator can be found
at https://www.github.com/ElteHupkes/revolve.

4.1 Robot Design

The design of robots and their genetic representation is based on RoboGen [1]. The robots
are constructed from basic 3D-printed modules, and each robot’s genotype describes its
layout. The genotype is comprised of a tree structure, with the root node representing
a core module from which further components branch out. Robot bodies consist of three
types of component: fixed bricks, a core component, and active hinges. These components are
depicted in Figure 4. The original RoboGen framework includes more components, but these
are omitted from the present study. The core component houses the robot’s Raspberry Pi
micro-controller [35], and the active hinges contain servo motors (see section 5 for more
details). For complete details of this specification and example listings, refer to Appendix
B.

For easy identification of the heredity of each robot’s morphology, the standard RoboGen
specification was extended to include a colour for each component. This allows the morpho-
logical traits that a robot inherits to be easily attributed to either parent by matching
colours.

Figure 5 shows a schematic representation of two manually designed robot morphologies
in this scheme.

4.2 On-line Evolution of Morphology

To validate the choice of RoboGen as physical substrate and genetic representation for on-line
evolution of robot morphology, we conducted experiments where a population of simulated
robots coexist in a featureless arena and are centrally evaluated and selected.

Parent and survivor selection is performed on the basis of the robots’ locomotive perfor-
mance, calculated as

f = v + 5 · s, (1)

with v the length of the path the robot has travelled over the last 12 seconds and s is the
length of a straight line from the beginning to the end of that path. This value is continuously
updated. Robots can only be selected when they are ‘mature’, i.e., after running for at least
15 seconds.

8

https://www.github.com/ElteHupkes/revolve


The population is seeded with 15 randomly generated robots that are spread throughout
the environment. The population is culled every 30 seconds by removing any robots that
have a fitness less than a fraction 0.7 of the mature population mean, but a minimum of 8
robots is maintained to ensure variation and prevent extinction. If the population reaches
30 individuals and no individuals match the culling criterion, the 70% least fit robots in the
population are removed to prevent convergence.

New individuals are inserted at a fixed rate of one every 15 seconds. Two parents are
selected using using 4-tournament selection, and their offspring is generated using RoboGen’s
recombination and variation operators. The offspring is then placed at a random position
within a circle of radius 2m around the origin.

The robots run artificial neural network controllers that evolve in conjunction with their
morphologies. RoboGen prescribes robot controllers that are based on fully connected,
recurrent artificial neural networks, and these are represented in the genome.

This is obviously not an accurate representation of the Triangle of Life as selection oc-
curs centrally, and local selection schemes will lead to different levels of selection pressure.
However, it does allow us to gauge the suitability of the selected substrate in an on-line
setting.

Figure 6 shows the development of fitness over time. The experiments were terminated
after the birth of 100 individuals, which is a reasonable number of individuals to consider also
in real-world experiments. It is clear that the robots rapidly improve their locomotion capa-
bilities, showing that the substrate, genetic encoding, and variation operators are suitable
for on-line evolution and can yield interesting results in a limited number of evaluations.

4.3 On-line Learning

Learning is an important aspect of the Triangle of Life conceptual model. In the Triangle
of Life, evolution is not ‘just’ an optimizer of some robot features, but a force of continuous
and pervasive adaptation. New individuals are likely to be morphologically different from
their parents, and therefore any recombined controllers that they inherit may not suit their
bodies as a matter of course. Therefore, every newly created robot needs to learn to control
its own body, necessitating on-line individual learning capabilities.

Earlier work identified RL PoWER [26] as a reliable and efficient algorithm for gait learn-
ing in arbitrary morphologies with modular robots consisting of homogeneous modules [9].
We verified these findings for the RoboGen-based morphologies using the Revolve simulator.
In these experiments, RL PoWER was revisited and it was noted that it is in essence an
evolutionary algorithm, which subsequently was improved by adding 2-parent crossover with
binary tournament selection. This resulted in significantly better performance for a similar

9



convergence time [25]. A detailed description of the resulting learning algorithm is given in
Appendix D.

Parameter Description

Environment Infinite flat plane
Type 2-parent selection with binary tournament
Evaluation Fitness measured at the end of each spline evaluation periodi.
Initial spline-size 3
Maximum spline-size 20
Interpolated spline-size 100
Evaluation rate (seconds) 30
Population size 10
Variance 0.008
Variance decay 0.98
Maximum evaluations 1,000

i
Fitness is measured over a 30 second sliding time window. See Eq. 3 .

Table 1: RL PoWER on-line settings

Table 1 provides configuration settings for the algorithm as it was applied. As an illustra-
tion of the findings reported in [25], Figure 7 shows the results for gait learning in two robot
shapes. The shapes considered in this excerpt are those with the manually designed ‘spider’
and ‘gecko’ shapes shown in Figure 5. Both shapes show an improvement from ∼ 1.0 m/s
up to ∼ 3.5 m/s after 100 evaluations of 30 seconds each. The results of the experiments
with RL PoWER indicate that it is an appropriate choice for on-line learning of gaits.

5 Implementation in Hardware

This section describes the real-world instantiation of the Triangle of Life concepts based on
the choices outlined in the previous section. As explained in 4.1, for reasons of simplicity,
we base our design on the well-established RoboGen system [1] .

To express a genotype, i.e., to physically instantiate a robot, components of the appro-
priate colours are printed and manually assembled with added electronics as described in
Section 5.1. The original RoboGen specification provides for Arduino microcontroller boards
to host the controller code and operate the robots. We use the Raspberry Pi [35] instead as it
offers greater flexibility, allowing Python-based controller code. This substantially increases
the speed and ease of software development and debugging, and offers a wide selection of

10



libraries. The Raspberry Pi runs the robot controller as well as further implementation logic
(e.g., communication protocols).

The micro-controller is extended with a ‘hat’ extension board that was created to save
space inside the core module and ease robot assembly. It contains two DC-to-DC converters
(one for the Raspberry Pi, one for the servos) to adjust the voltage given by the battery
to voltage needed by the components, an inertial measurement unit (IMU), power switch,
I2C adapter (for the photosensors) and pins that connect directly to General-Purpose In-
put/Output (GPIO) pins on the micro-controller, used to control the servos and the light.

In order to accommodate the Raspberry Pi and hat assembly, we enlarged the size of the
core module. All the code used in this project, including the design files for 3D printing the
modules and the ‘hat’ design, is available at https://github.com/ci-group/revolve/hw.

5.1 Morphogenesis

Morphogenesis is, for the current proof of concept, a manual process of robot assembly where
a robot’s genome is expressed. In the long-term vision, this eventually is also an automated
process, but the development of automated robot assembly is beyond the possibilities of the
current proof of concept.

First, the modules of the body are 3D-printed on the Flashforge CreatorPro printer
using a Fused Deposition Modelling technique in which an element is built by laying down
a plastic filament, layer by layer. The printed components are then assembled according to
the layout specified in the genotype; active hinges (Figure 4, right image) are equipped with
servomotors and the connector cables of those are threaded through the body to the core
module. After fitting the servo inside the hinge and connecting it to the robot, it is set into
a neutral position (0◦), the hinge is adjusted to form a straight joint, and then the position
is fixed with screws. Once activated, the servos’ angles are controlled by sending pulse-width
modulated signals to set them at a specific angle (in the range of −45◦ to 45◦) and maintain
that position.

The extension board and battery are connected to the micro-controller and the assembly
is inserted into the core module and connected to the servos’ connector cables. The core
module is then covered with a fiducial symbol used for tracking (see Section 5.2.1).

Finally, a copy of the controller code is copied to the robot and configured by means of
a JSON-like formatted configuration file. This file contains parameters for gait learning (see
Table 1), connection parameters for tracking and mating servers, hardware configuration of
the robot and additional information that may vary from one robot to another, like its name
or the ID of the tracking symbol used.

The robot is then placed in the arena, and the learning process that represents the infancy

11

https://github.com/ci-group/revolve/hw


phase is activated. Figure 9 shows two assembled robot bodies corresponding to the genomes
depicted in Figure 5.

5.2 Infancy

The infancy phase of this proof-of-concept implementation consists of the robots learning
a gait that allows for efficient locomotion. What a suitable gait for a particular body plan
looks like is hard to determine a priori, and it is likely that gaits that work well for a robot’s
parent have to be substantially adapted for the child’s morphology. Therefore, we opted
to implement non-Lamarckian evolution: the learned gaits are not inheritable, and each
individual has to develop them from scratch.

5.2.1 Localisation

To provide feedback for the learning process, an overhead camera and attached localisation
server track the robot’s position using ReacTIVision2. This software implements tracking
of fiducial markers (Figure 10) that are printed on the cover of each robot. The software
captures output from the camera, analyses it to find the markers’ positions on the screen
and sends the information about the ID and the position to a client application. In our case,
the client application is a fitness/localisation server that keeps track of the robots’ trails
and serves a fitness evaluation to the robots themselves in order to let them evaluate their
walking abilities. This server acts as a virtual sensor that allows the robots to assess the
performance of candidate gaits.

The localisation module in the robot communicates with the localisation server through
a predefined protocol:

Start tracking Start tracking the robot and set current fitness to 0.

Get current position Retrieve current position of robot in arena.

Get current fitness Retrieve displacement between the start of tracking and current po-
sition and the sum of displacements between consecutive positions reported by Reac-
TIVision.

The tracking system uses a QuickCam Pro 9000 camera, mounted on a aluminium scaf-
folding frame 2.5 meters above the arena, pointing straight downwards. The camera is
connected to a computer running the ReacTIVision 1.5 software and the tracking/fitness
server.

2http://reactivision.sourceforge.net/

12



5.2.2 Learning

As explained in Section 4.3 the task of the robot’s learning algorithm is to optimise the
robot’s controller so that performance—in this case, the distance covered by the robot—
is maximised. Appendix D provides details of the RL PoWER algorithm that the robots
employ to achieve on-line learning of locomotion. We implement RL PoWER to allow for
on-line learning of gaits for arbitrary morphologies: the robots are controlled through a set
of splines that define an open-loop gait as described in [9]. This use of sets of cyclic spline
functions was taken from [38] and detailed in Appendix C. Since our aspiration is to compare
the results of gait learning of robots in real life to that in simulation, we replicate exactly
the RL PoWER implementation that was tested in simulation.

The robot controller was implemented in C++ and Python and is comprised, in addition
to the splines-based ‘brain’, of two modules: one for localisation (see section 5.2.1) and
one for communication with other robots and the mating server (see 5.3.2). The robots were
tested with 5 experimental runs each in 2m×2m arena. After each run, battery was replaced
with a recharged one, and the robot ‘brain’ was reset.

Figure 11 shows the results from testing the learning algorithm on real hardware. The
real hardware results show a significant decrease in performance when compared to the
simulation. This can be attributed to several factors: (1) servo motors were constantly
breaking—on average 1.5 motors per run; (2) the weight of a robot’s ‘head’ significantly
influences the performed gait; (3) robots were bounded in a small arena compared to an
infinite plane in simulation. However, there is an evident positive trend in performance, and
after 30 evaluations (that take 20 to 30 minutes) the robots have obtained gaits that allow
them to traverse the arena.

5.3 Mature Life

Once robots reach the mating area, they are deemed fertile and can communicate and ex-
change genomes with other robots to create offspring. At the beginning of their life, robots
are intentionally placed far from the mating area so that only robots that achieve efficient
locomotion capabilities can reach the fertile state and generate new offspring.

The mating area is defined by two stationary red LEDs, situated in a corner of the arena.
When a robot’s photosensor detects red light above a certain intensity threshold, the robot
starts emitting and listening for mate request messages. In our experiments, the threshold
itself is not in any way adaptive or evolved, but remains static throughout the whole mating
process. This ensures that the robots will eventually meet and reproduce in a reasonable
amount of time.

When the two robots are in the mating area and successfully exchange mating requests

13



they agree to mate. This implies that the robots do not actively pursue or even perceive
each other, an addition that will be possible when future robots are equipped with cameras.

5.3.1 Selection and Reproduction

The current implementation has only the most basic selection mechanism: when a potential
mate is available, a robot will agree to produce offspring. With only two robots available,
more sophisticated selection procedures would make no sense. However, when the set-up is
extended to be comprised of more individuals, selection schemes can be considered that take
any aspect, ranging from task performance to genetic suitability, into account.

Recombination and mutation of genomes is implemented through the standard operators
defined in RoboGen. As illustrated in Section 4.1, the morphologies of the robots can be
represented as trees, the nodes of which are hardware components; with a shape, colour and
potentially functionality (e.g wheel rotation). Therefore, conveniently, the recombination and
mutation operators that may be used are well-established in genetic programming practice
[3].

More specifically, the recombination of parent genomes is implemented as random sub-
tree exchange; the parameters of these operations are defined in the robot start-up configu-
ration file. Since the tree genome representation is non-linear, we may run into the problem
of the tree becoming too large, and this is the reason why experimenting and tweaking these
random parameters is essential. A common practice is to let them evolve, however we do
not do this in our implementation for simplicity.

Unlike the recombination operator, the mutation operator is applied directly in the off-
spring, and replaces a randomly selected sub-tree with a randomly generated tree of the same
kind - according to the format RoboGen defines. Once again, the random parameters may
be tweaked, but it needs to be kept in mind that mutations need to be minor and happen
rarely; Banzhaf et al. suggest a mutation rate of 0.05 or lower [3]. Refer to Appendix A for
a more detailed and implementation-specific illustration of our recombination and mutation
operators.

5.3.2 Mating protocol

The mating protocol involves the robots and the mating server. The communication between
the robots happens in a distributed manner, so selection is distributed and localised, while
recombination and the subsequent morphogenesis phase are centralised. This is analogous
to a population living and mating in an ecosystem, while their offspring are born in a central
clinic.

14



When a mating sequence initiates, the robots start communicating over the wireless
network. Their communication involves states—‘learning’, ‘evaluating’, ‘ready to mate’, and
‘initiate mating’—and every interaction they have may affect or change the state of each
robot. ‘Learning’ indicates the state of infancy, in our case developing the ability to walk
towards the light source. ‘Evaluating’ is the short-period state when the robot receives
a fitness feedback from the localisation server. During this process there is a constant
evaluation loop that determines whether the learning goal has been achieved, and essentially
decides whether the robot is ready to mate or not. When the robot approaches the red light
source close enough so that the photocell receives a light signal over the threshold of 85% of
the maximum measurable intensity, it initiates ‘ready to mate’ state. If two robots initiate
this same state and finish their handshake communication successfully, they transition to
‘initiate mating’ state. The basic communication algorithm follows the 3-way-handshake
pattern and is described in Algorithm 1.

Algorithm 1: Communication protocol

1 this ← Robot:object(id, state);
2 this.state ← ready to mate;
3 available ← true;
4 while available do
5 broadcast(this.state);
6 messages ← receive messages();
7 if ready to mate in messages then
8 this.state = finding mate;
9 broadcast(this.id, potential mate id);

10 end
11 if this.id in messages then
12 this.state = mate found;
13 broadcast(this.id, this.state);
14 available = false;
15 send genome(mating server);

16 end

17 end

The protocol starts when a robot declares its availability to mate by broadcasting a
message to the wireless network. The robot then listens to the same network in order to
discover messages sent by other robots of the same kind. Once an suitable mate is identified,
the robot transmits the mate’s ID. If each robot receives a message with its own ID in return
the agreement is complete, and both robots transmit their genomes to the mating server.

15



The mating server module listens on the wireless network and accepts TCP packets with
genomes and unique IDs of the robots. The logic of this work-flow implies that the robots
have autonomously come to an agreement, so the mating server does not need to perform
any further checks: the decision of finding a good mating partner is made by the robots
themselves without referral to any central authority. Once a pair of genomes is complete,
the mating server recombines them, applies variation operators and produces the offspring
genome, ready for morphogenesis, completing the Triangle of Life.

5.4 The Life Cycle

We have integrated the components described in the foregoing to execute one life cycle.
To this end, we built a robot habitat where the Training Centre and the Arena were not
separated. That is, we use the same space for educating the infants and to have the adults
meet and mate. This habitat is a bounded 2.2m× 3.0m rectangle lined with a grey carpet.
The boundaries are made of wood to prevent the robots from escaping the area.

The cycle started with two genotypes shown in Listing 1 (Section4.1) and Listing 2. These
genotypes were used to carry out the morphogenesis process that resulted in the blue and
green robots shown in Figure 9. Printing and assembling all components took approximately
a day per robot. The speed of the 3D-printer is a crucial factor here; in our case 3 hours
were needed to print one block. The initial population consisted of two robots, the Spider
and the Gecko, as shown in Figure 12 (left). The extended population shown in Figure 12
(right) is explained further in text.

The Infancy stage focused on gait learning. Because controllers of newborn robots are
randomly initialised, their first task is to learn effective locomotive behaviour. This happened
under supervision of the overhead camera system as outlined in Appendix D. The robots are
equipped with a photocell that allows them to detect a light source placed at the edge of
the arena. The robots can gauge the efficacy of their controllers by monitoring the intensity
of the light source. If the robots succeed in learning to locomote, they will reach the light
source. Once they are close enough (again indicated by light intensity), they are deemed fit
and mature enough to procreate and change their status from infant to adult.

Due to our simplified set-up the difference between the Arena for adult robots and the
Training Centre for infant learning is only conceptual. In fact, they are the same physical
space. Hence, adult robots need not move to another location, they can start communicating
to carry out mate selection. Here again, we had to simplify the system and make the
selection criterion void—after all there was only one option for choosing a partner. Thus,
the two would-be parents passed each others test by default and decided to exchange genetic
material. The robots transmitted their genomes to a server that recombined the received

16



genomes and produced the code for a new individual. (Note that the server is only a channel
of communication, it does not constitute a central overseer of the evolutionary process). The
new genome is exhibited in Listing 3.

A new morphogenesis process started with this genome, component parts were printed
and assembled. The image on the left hand side of Figure 13 shows the result, the first ‘robot
baby’ parented by two parent robots in a real world (not simulated) environment.

6 Discussion and possible extensions

The project we have described above is a proof of concept. At the cost of several simpli-
fications we have demonstrated the feasibility of physically evolving robots, validated the
suitability of an instantiation of the Triangle of Life, and obtained insights into the related
challenges.

It is important to note that we did not aim at creating an evolving robot population,
because it would require several consecutive generations with many selection and reproduc-
tion cycles. Instead, we demonstrated one reproduction cycle, which is the basic unit to be
repeated for evolution. The amount of hand-work was significant, but we argue that this
does not invalidate the main concept, it merely reflects the current level of technology and
the resources available to us at the moment.

In the following we discuss the work-flow for creating physically evolving robot popula-
tions and elaborate on its elements based on the know-how we have obtained through this
project. The work-flow consists of the following steps:

1. Define the make-up of the robots and a genetic code that can specify such robots.

2. Establish a production procedure that starts with a genotype (code for a certain robot)
and ends with a phenotype, a physical robot designated by the given genotype.

3. Set up a learning method for infant robots to learn a set of basic skills under supervision.

4. Implement a reproduction mechanism through a) a policy that regulates mate selection
and b) a recombination operator that works with the parental genomes as defined by
the given genetic code. Specify a task to be performed by the robots and ways to
measure task performance (this is optional). Equip robots with learning abilities in a
non supervised fashion (this is optional).

When designing the robot make-up we can distinguish the morphologies (bodies, hard-
ware) and the controllers (brains, software). Regarding the morphologies two aspects play

17



an essential role. First, the components of the robots. The RoboGen system we used here is
based on the idea of combining 3D-printable and prefabricated components. This provides
a practicable approach and any specific system can be easily extended through adjusting ei-
ther type of components. For instance, we can make the dimensions of the 3D-printed blocks
evolvable, allow the use of flexible plastic that bends, or add different sensors and cameras.
Such extensions enrich the design space and make the set of possible robot morphologies
and behaviours larger. The second aspect concerns the constructibility of the robots. In our
current system robots are constructed by hand. This is a practical shortcut for an academic
project, but advanced technologies for automating the assembly of machines are available,
for instance, in the car industry. In a more advanced follow-up project such technologies
can be employed to reduce the role of human involvement and to increase the speed of
(re)production.

Concerning the controllers, the user has an extra decision to make regarding the evolvable
and learnable features. In general, the properties of the robots can be divided into three
categories; fixed (e.g., the property that the controllers are neural networks), evolvable (e.g.,
the structure of the neural network that controls the robot), and learnable (e.g., the weights
inside the neural network). In a non-Lamarckian system the set of evolvable features is
disjoint from the set of learnable ones and it is up to the experimenter to determine which
features will be inheritable / evolvable and which ones will be subject to learning. In our
current project we use one spline-based controller with learnable parameters for each servo
motor. Thus, the controllers do not contain evolvable parts, although one could argue that
inheritance plays an implicit role via the morphologies as the number and the position of
the servo motors was evolvable.

The supervised learning in the Training Centre serves to equip the robots with sufficient
skills to earn the status of a fertile adult. In our current version this was limited to gait
learning, which is fundamental for a system where a new robot can have a new morphology
that differs from the morphologies of the parents. Our corresponding fertility test was also
simple. By walking to the red lights the robots proved to be good enough to reproduce.
For any practically useful system the set of skills needs to be larger. The specific list of
skills will depend on the application at hand, but it stands to reason that it should at least
include gait learning, obstacle avoidance, directed locomotion, foraging (recharging), and
the recognition of other robots (possible mates). Whether or not learning multiple skills
can be best done sequentially or in parallel is an open issue with contradicting advices
in the literature [2, 37]. Another aspect concerns the separation of the Training Centre
and the Arena. Our current system was simple as we did not have physically separated
compartments. However, in general the Training Centre can be separated from the Arena
to contain the necessary monitoring and feedback facilities required for supervised learning.

18



Furthermore, the environmental conditions can be made easier than in the Arena to allow
for a gradual development and the Training Centre can be composed of different sections
belonging to different modules of the total learning ‘syllabus’.

The fourth stage in our work-flow belongs to reproduction, task execution and learning
in the Arena. Also here we (over)simplified things in our proof of concept project. The
fact that we only had two robots implied that the mate selection policy was trivial: accept
the other robot without conditions. In a more realistic system, robots should prefer mating
partners with desirable properties. These can be indicators of viability and/or based on
task performance if the robots have tasks to carry out. As mentioned in Section 3.1, a task
is not required to obtain an interesting robot evolution system, but it is natural to expect
that the majority of future applications will concern robots that do something useful.3 This
raises the issue of interfacing the task to the robot population. By the nature of such
systems this can be done through the fitness function that drives evolution and the reward
functions used in the learning mechanisms (in the Training Centre as well as in the Arena).
A fundamental issue here is how to combine environmental selection towards viability and
task-based selection towards utility. A suitable approach is presented in [21].

Last but not least, let us consider the technical possibilities of producing several consec-
utive generations with many selection and reproduction cycles. This would require higher
production capacity, recharging stations, and some definition of ’death’, that is, determining
when to remove and recycle a robot. With our current system, the production of a new
robot takes about a day and the gait learning process needs 20 to 30 minutes. Most of the
time to produce a new robot is spent printing, but more and faster printers can be used,
the components can be printed ahead of time, and the production time would only involve
assembly of the components. Thus, it would be feasible to produce at least six robots per
day. In a month’s time 100 robots would be feasible. These need not exist simultaneously:
some will fail and be recycled. We estimate that the population size would not exceed 40
robots at any given moment. Counting with 2m2 per robot the Arena should be enlarged to
about 80m2. All in all, we deem this feasible, the limitations are mainly practical.

7 Concluding Remarks

In this paper we take a modest step towards systems of physically evolving robots. Our
long-term vision foresees entire robotic ecosystems that evolve and work for long periods in
challenging environments without the need for direct human oversight. Possible examples

3This is not necessary for biologically motivated studies where the only challenge is to survive and
reproduce.

19



include robot colonies for monitoring remote regions on Earth, ore mining at extreme depth,
and terraforming on other planets.

The current state of the art is very far from this vision. The field of real-world robot
evolution is in a nascent state and the system we describe here is a very rudimentary im-
plementation. Nevertheless, this paper contains three contributions to this area. First, we
discuss a system architecture for physically evolving robot populations, based on the Triangle
of Life model [17]. Second, we describe a proof of concept implementation to demonstrate
how the three stages of the generic model can be realized, be it in a simplified form, and
connected into one life cycle. Third, we review the lessons learned from this implementation
and identify important issues for further research and development.

References

[1] J. Auerbach, D. Aydin, A. Maesani, P. Kornatowski, T. Cieslewski, G. Heitz, P. Fer-
nando, I. Loshchilov, L. Daler, and D. Floreano. RoboGen: Robot Generation through
Artificial Evolution. In H. Sayama, J. Rieffel, S. Risi, R. Doursat, and H. Lipson, edi-
tors, Artificial Life 14: Proceedings of the Fourteenth International Conference on the
Synthesis and Simulation of Living Systems, pages 136–137, New York, New York, USA,
jul 2014. The MIT Press.

[2] J. E. Auerbach and J. C. Bongard. Environmental Influence on the Evolution of Mor-
phological Complexity in Machines. PLoS Computational Biology, 10(1):e1003399, jan
2014.

[3] W. Banzhaf, P. Nordin, R. Keller, and F. Francone. Genetic Programming: An Intro-
duction. Morgan Kaufmann, San Francisco, 1998.

[4] J. C. Bongard. Evolutionary robotics. Communications of the ACM, 56(8):74–83, 2013.

[5] N. Bredeche, J.-M. Montanier, W. Liu, and A. F. Winfield. Environment-driven dis-
tributed evolutionary adaptation in a population of autonomous robotic agents. Math-
ematical and Computer Modelling of Dynamical Systems, 18(1):101–129, feb 2012.

[6] L. Brodbeck, S. Hauser, and F. Iida. Morphological evolution of physical robots through
model-free phenotype development. PLoS One, 10(6):e0128444, June 2015.

[7] N. Cheney, R. MacCurdy, J. Clune, and H. Lipson. Unshackling evolution: Evolving soft
robots with multiple materials and a powerful generative encoding. In C. Blum, editor,

20



Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation,
GECCO ’13, pages 167–174, New York, NY, USA, 2013. ACM.

[8] A. Cho. The accidental roboticist. Science, 346(6206):192–194, October 2014.

[9] M. D’Angelo, B. Weel, and A. E. Eiben. Online Gait Learning for Modular Robots with
Arbitrary Shapes and Sizes. pages 45–56, 2013.

[10] S. Doncieux, N. Bredeche, J.-B. Mouret, and A. Eiben. Evolutionary robotics: what,
why, and where to. Frontiers in Robotics and AI, 2(4), 2015.

[11] S. Doncieux, J.-B. Mouret, N. Bredeche, and V. Padois. Evolutionary robotics: Ex-
ploring new horizons. In S. Doncieux, N. Bredèche, and J.-B. Mouret, editors, New
Horizons in Evolutionary Robotics: Extended Contributions from the 2009 EvoDeRob
Workshop, volume 341 of Studies in Computational Intelligence, pages 3–25. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2011.

[12] A. Eiben, S. Kernbach, and E. Haasdijk. Embodied artificial evolution. Evolutionary
intelligence, 5(4):261–272, 2012.

[13] A. Eiben and J. Smith. From evolutionary computation to the evolution of things.
Nature, 521(7553):476–482, May 2015.

[14] A. Eiben and J. Smith. Introduction to Evolutionary Computing. Springer, 2nd edition,
2015.

[15] A. E. Eiben. In Vivo Veritas: Towards the Evolution of Things. In T. Bartz-Beielstein,
J. Branke, B. Filipič, and J. Smith, editors, Parallel Problem Solving from Nature PPSN
XIII, pages 24–39, Ljubljana, Slovenia, 2014.

[16] A. E. Eiben. EvoSphere: The World of Robot Evolution. pages 3–19, Mieres, Spain,
2015. Springer International Publishing.

[17] A. E. Eiben, N. Bredeche, M. Hoogendoorn, J. Stradner, J. Timmis, A. Tyrrell, and
A. F. T. Winfield. The Triangle of Life: Evolving Robots in Real-time and Real-space.
In P. Liò, O. Miglino, G. Nicosia, S. Nolfi, and M. Pavone, editors, Advances in Artificial
Life, ECAL 2013, pages 1056–1063, Taormina, Italy, sep 2013. MIT Press.

[18] D. Floreano, P. Husbands, and S. Nolfi. Evolutionary robotics. In Springer handbook
of robotics, pages 1423–1451. Springer, 2008.

21



[19] D. Floreano and L. Keller. Evolution of Adaptive Behaviour in Robots by Means of
Darwinian Selection. PLoS Biology, 8(1):e1000292, jan 2010.

[20] K. Glette, G. Klaus, J. C. Zagal, and J. Torresen. Evolution of locomotion in a sim-
ulated quadruped robot and transferral to reality. In Proceedings of the Seventeenth
International Symposium on Artificial Life and Robotics, pages 1–4, 2012.

[21] E. Haasdijk, N. Bredeche, and A. E. Eiben. Combining environment-driven adaptation
and task-driven optimisation in evolutionary robotics. PLoS ONE, 9(6):e98466, 2014.

[22] T. Hemker, H. Sakamoto, M. Stelzer, and O. von Stryk. Hardware-in-the-loop opti-
mization of the walking speed of a humanoid robot. In CLAWAR 2006, pages 614–623,
2006.

[23] J. Hiller and H. Lipson. Automatic design and manufacture of soft robots. Robotics,
IEEE Transactions on, 28(2):457–466, 2012.

[24] N. Jakobi, P. Husbands, and I. Harvey. Noise and the reality gap: The use of simulation
in evolutionary robotics. In F. Moran, A. Moreno, J. Merelo, and P. Chacon, editors,
Advances in Artificial Life, number 929 in LNAI, pages 704–720. Springer, Granada,
Spain, 1995.

[25] M. Jelisavcic, M. De Carlo, E. Haasdijk, and A. Eiben. Improving RL power for on-line
evolution of gaits in modular robots. In 2016 IEEE Symposium Series on Computational
Intelligence (SSCI), pages 1–8, Athens, Greece, dec 2016. IEEE.

[26] J. Kober and J. Peters. Learning motor primitives for robotics. In 2009 IEEE Inter-
national Conference on Robotics and Automation, pages 2112–2118, Kobe, Japan, may
2009. IEEE.

[27] S. Koos, J.-B. Mouret, and S. Doncieux. The transferability approach: Crossing the
reality gap in evolutionary robotics. Evolutionary Computation, IEEE Transactions on,
17(1):122–145, 2013.

[28] T. Kuehn and J. Rieffel. Automatically Designing and Printing 3-D Objects with Evo-
Fab 0.2. pages 372–378, jul 2012.

[29] P. Levi and S. Kernbach, editors. Symbiotic Multi-Robot Organisms: Reliability, Adapt-
ability, Evolution, volume 7 of Cognitive Systems Monographs. Springer, Berlin, Heidel-
berg, New York, 2010.

22



[30] H. Lipson and J. B. Pollack. Automatic design and manufacture of robotic lifeforms.
Nature, (406):974–978, 2000.

[31] H. Lipson and J. B. Pollack. Automatic design and manufacture of robotic lifeforms.
Nature, 406:974–978, 2000.

[32] J. Long. Darwin’s Devices: What Evolving Robots Can Teach Us About the History of
Life and the Future of Technology. Basic Books, 2012.

[33] R. MacCurdy, R. Katzschmann, Y. Kim, and D. Rus. Printable hydraulics: A
method for fabricating robots by 3d co-printing solids and liquids. arXiv preprint
arXiv:1512.03744, 2015.

[34] S. Nolfi and D. Floreano. Evolutionary robotics: The biology, intelligence, and technology
of self-organizing machines. MIT press, 2000.

[35] R. Pi. Raspberry pi. Raspberry Pi 1 HDMI 13 Secure Digital 34 Universal Serial Bus
56 Python (programming language) 84, page 1, 2012.

[36] J. Rieffel and D. Sayles. EvoFab: A Fully Embodied Evolutionary Fabricator. pages
372–380, York, UK, 2010. Springer, Berlin, Heidelberg.

[37] C. Rossi and A. Eiben. Simultaneous versus incremental learning of multiple skills by
modular robots. Evolutionary Intelligence, 7(2):119–131, 2014.

[38] H. Shen, J. Yosinski, P. Kormushev, D. G. Caldwell, and H. Lipson. Learning fast
quadruped robot gaits with the rl power spline parameterization. Cybernetics and In-
formation Technologies, 12(3):66–75, 2012.

[39] V. Trianni. Evolutionary swarm robotics: evolving self-organising behaviours in groups
of autonomous robots, volume 108. Springer, 2008.

[40] P. A. Vargas, E. A. Di Paolo, I. Harvey, and P. Husbands. The horizons of evolutionary
robotics. MIT Press, 2014.

[41] M. Waibel, D. Floreano, and L. Keller. A quantitative test of Hamilton’s rule for the
evolution of altruism. PLOS Biology, 9(5):e1000615, 2011.

[42] L. Wang, K. C. Tan, and C. M. Chew. Evolutionary robotics: from algorithms to
implementations. World Scientific, 2006.

23



[43] R. A. Watson, S. G. Ficici, and J. B. Pollack. Embodied evolution: Distributing an
evolutionary algorithm in a population of robots. Robotics and Autonomous Systems,
39(1):1–18, Apr. 2002.

[44] R. A. Watson, S. Ficiei, and J. B. Pollack. Embodied evolution: Embodying an evolu-
tionary algorithm in a population of robots. In Evolutionary Computation, 1999. CEC
99. Proceedings of the 1999 Congress on, volume 1. IEEE, 1999.

[45] M. Wehner, R. L. Truby, D. J. Fitzgerald, B. Mosadegh, G. M. Whitesides, J. A.
Lewis, and R. J. Wood. An integrated design and fabrication strategy for entirely soft,
autonomous robots. Nature, 536(7617):451–455, 2016.

[46] J. C. Zagal and J. Ruiz-Del-Solar. Combining simulation and reality in evolutionary
robotics. Journal of Intelligent and Robotic Systems, 50(1):19–39, 2007.

[47] V. Zykov, E. Mytilinaios, B. Adams, and H. Lipson. Self-reproducing machines. Nature,
435(7039):163–164, 2005.

[48] V. Zykov, E. Mytilinaios, M. Desnoyer, and H. Lipson. Evolved and designed self-
reproducing modular robotics. Robotics, IEEE Transactions on, 23(2):308–319, 2007.

24



Figure 2: Positioning robot evolution systems. The place of the usual ER approach is shown by the black
dot (no. 1): evolving robot controllers off-line in simulation. The orange dot (no. 2) designates the works
of Lipson [30] and Auerbach [1] because they employ off-line evolution of robot morphologies in simulation.
The embodied evolution system of Watson et al. [44] works with real robots to evolve good controllers on-line,
hence it belongs to the green dot (no. 3). The work of Brodbeck et al. [6], where morphologies are evolved by a
centralized off-line EA using real world fitness evaluations can be positioned at the blue dot (no. 4). Finally,
the system we are after sits at the red dot (no. 5): robot morphologies (and the corresponding controllers)
are evolved in an on-line fashion in real hardware.

25



(a) Scheme A is fully simulation based; a
conventional centralized EA calls a simula-
tor for every fitness evaluation.

(b) Scheme B relies on a conventional cen-
tralized EA that performs (some of) the fit-
ness evaluations on real hardware.

(c) Scheme C: embodied evolution of con-
trollers in fixed robot bodies. There is no
centralized evolution manager, selection and
reproduction are regulated by the robots and
their interactions indicated by the arrows.

(d) Scheme D: Embodied evolution of con-
trollers and bodies. There is no centralized
evolution manager, selection and reproduc-
tion are regulated by the robots and their in-
teractions.

Figure 1: Illustration of various system architectures for robot evolution.

26



Figure 3: The Triangle of Life. The pivotal moments that span the triangle and separate the three stages are:
1) Conception: A new genome is activated, construction of a new robot starts. 2) Delivery: Construction of
the new robot is completed. 3) Fertility: The robot becomes ready to conceive offspring.

27



(a) Fixed brick (b) Core component (c) Active hinge

Figure 4: The 3D-printable robot components.

28



(a) ‘Spider’ (b) ‘Gecko’

Figure 5: Schematic diagram of two robot morphologies with core component (labelled E0), active hinges
(Ix), and fixed bricks (Fx). Full listings of the respective genomes are provided in Appendix B (listings 1 and
2).

29



0

2

4

6

8

0 25 50 75 100

Number of births

M
ed

ia
n 

fit
ne

ss

Figure 6: Fitness progression of 30 replicate runs, with the number of birth events as time scale. The y-axis
shows the fitness as defined by Equation 1. Each point represents a median value of an entire population
within a ’birth’ time-frame. The blue curve shows the median trend for 30 replicate runs.

30



● ●

● ● ●

● ● ● ● ●

●

● ● ● ●
●

● ●

● ●

● ● ● ● ● ●

●

●

●

●

● ● ● ● ● ●

● ● ●

●

● ●

●

●
●

●
● ●

●

●

● ● ●

●

●

●

●
● ●

●

● ● ● ●

●

● ●

●

● ●

●
●

● ●

●
●

●

● ● ●

●

● ●

● ●
● ●

●
●

●

0

1

2

3

4

5

0 25 50 75 100
Evaluation

S
pe

ed
 [c

m
/s

]

Spider

(a) ‘Spider’

●

●

● ●

●

●

●

● ●

●

●

● ●

●

● ● ●
●

●
●

●

●

● ●
●

●

● ●

● ●

● ●

● ● ●
●

●

●

●

●

● ● ● ●

● ●

●

● ●

●

●

●

● ● ●

●

●

● ● ●

●

●

● ●

● ●

●

●
● ●

●

● ●

● ●

● ● ● ● ●

●

●

● ● ● ●

● ● ●

●

0

1

2

3

4

5

0 25 50 75 100
Evaluation

S
pe

ed
 [c

m
/s

]

Gecko

(b) ‘Gecko’

Figure 7: Development of locomotion speed for two robot shapes over 10 replicate runs. The coloured dots
denote individual runs, the black curve indicates the average of all 10 runs.

31



Figure 8: Raspberry Pi with hat board design on top and battery mounted below.

32



Figure 9: The real robots: the ‘Spider’ (left) and the ‘Gecko’ (right).

33



Figure 10: ReacTIVision markers used for tracking of the robots, representing IDs from 0 to 5 (left to
right, top to bottom).

34



●

●
● ● ●

● ● ● ● ●

● ●

● ● ● ● ● ● ● ●

●

●

● ● ● ● ● ● ● ●

● ● ● ● ● ●

● ● ●

●

●

● ● ● ● ● ● ● ● ●

0

1

2

3

4

5

0 25 50 75 100
Evaluation

S
pe

ed
 [c

m
/s

]

Spider

●

●
●

● ● ● ● ● ● ●

●

●

● ●

● ● ● ● ● ●

●

●
●

● ● ● ● ● ● ●

●

●
●

● ● ● ● ● ● ●

● ● ●

● ● ●

● ●

● ●

0

1

2

3

4

5

0 25 50 75 100
Evaluation

S
pe

ed
 [c

m
/s

]

Gecko

Figure 11: Results from learning in hardware for the ‘Spider’, left and the ‘Gecko’, right.

35



Figure 12: Overview of entire habitat and the initial population consisting of the Spider and the Gecko
(left) and the extended population with the ‘parents’ and the offspring in the habitat (right).

36



Figure 13: Schematic diagram of the newly assembled ‘robot baby’ (left) and close-up of the physical robot
(right).

37



Figure 14: Tree representation of parent genomes.

38



Figure 15: Offspring after recombination operator is applied.

39



Figure 16: Offspring after mutation operator is applied.

40



●

●

●

●

●

−1π

−0.5π

0π

0.5π

1π

0.00 0.25 0.50 0.75 1.00
x

y

●

●

control points

interpolation

Figure 17: Example of a spline interpolated from six control points (note that five of these control points
are freely defined, the sixth is added to ensure periodicity).

41



A Genome recombination and mutation

The purpose of this appendix is to illustrate the recombination and mutation operators we
selected for the mating process. For simplicity, we consider parent genomes less complex
than the Spider and the Gecko used in the experiments.

The when the recombination operator is used on the parent genomes shown in Figure 14,
sub-trees are randomly exchanged, resulting in an offspring displayed in Figure 15.

Finally, the mutation operator may make a random mutation on the offspring - preferably
with substantially low probability. Note that as long as the node is of valid format (i.e any
valid robot part in the definition of RoboGen) the mutation is valid as well, meaning that
it does not need to follow any paradigm (such as colour) from the parent genomes. To
illustrate this notion, Figure 16 shows a mutated child where the leaf of the right sub-tree
was exchanged for two red nodes.

B Internal description of robot morphologies

The building blocks of robots’ bodies and their configuration are described in a configuration
file, as shown in Listings 1, 2 and 3. The syntax of the file is the same as used in the RoboGen
system.

Each line of the file describes a single module using a fixed set of parameters. The config-
uration starts with a single core component, hosting the controller. The level of indentation
describes a parent–child relationship between the modules, forming a tree structure.

The available component types in our robots are as follows:

• Core Component (up to 4 children components),

• Fixed Brick (up to 3 children components),

• Active Hinge (1 child component).

The rendered images of the elements are displayed in Figure 4. The current RoboGen
specification uses four additional types of modules, as well as a number of discontinued,
legacy part types. In our research, however, we have decided to limit the complexity by
choosing only the aforementioned subset.

Each line can be broken down into 5 sections:

1. Attachment position on parent part: 0-3

2. Part type

42



3. Unique identifier

4. Orientation relative to parent: 0-3, representing increments of 90 degrees

5. Parameters

As we do not use any of RoboGen’s parametrized parts, the only parameter in the configu-
ration files presented here is the colour of each component.

As an example, let us now break down the configuration from Listing 1, encoding the
quadruped blue robot (the “spider”). It all starts with a core component named E0:

0 CoreComponent E0 0 BLUE

Then, the four active hinges are added, one to each side:

0 CoreComponent E0 0 BLUE

0 ActiveHinge I0 1 BLUE

1 ActiveHinge I2 1 BLUE

2 ActiveHinge I4 0 BLUE

3 ActiveHinge I6 0 BLUE

The hinges I0 and I2 are mounted to the front and the back face of the core module and
they are rotated 90 degrees. Hinges I4 and I6, mounted to the left and right faces, have no
rotation. The next level are the fixed blocks, attached to the distal ends of the hinges:

0 CoreComponent E0 0 BLUE

0 ActiveHinge I0 1 BLUE

0 FixedBrick F0 0 BLUE

1 ActiveHinge I2 1 BLUE

0 FixedBrick F2 0 BLUE

2 ActiveHinge I4 0 BLUE

0 FixedBrick F4 0 BLUE

3 ActiveHinge I6 0 BLUE

0 FixedBrick F6 0 BLUE

All the blocks are identical, with no rotation. Then come another set of active hinges (I1,
I3, I5 and I7), mounted to those blocks:

0 CoreComponent E0 0 BLUE

0 ActiveHinge I0 1 BLUE

0 FixedBrick F0 0 BLUE

0 ActiveHinge I1 0 BLUE

1 ActiveHinge I2 1 BLUE

0 FixedBrick F2 0 BLUE

0 ActiveHinge I3 0 BLUE

2 ActiveHinge I4 0 BLUE

43



0 FixedBrick F4 0 BLUE

0 ActiveHinge I5 0 BLUE

3 ActiveHinge I6 0 BLUE

0 FixedBrick F6 0 BLUE

0 ActiveHinge I7 0 BLUE

All of them are mounted to the face of the fixed block opposite its attachment point and
they are not rotated. Finally, the last set of fixed blocks with no rotation, attached to the
other end of the hinges, is added to complete the robot:

0 CoreComponent E0 0 BLUE

0 ActiveHinge I0 1 BLUE

0 FixedBrick F0 0 BLUE

0 ActiveHinge I1 0 BLUE

0 FixedBrick F1 0 BLUE

1 ActiveHinge I2 1 BLUE

0 FixedBrick F2 0 BLUE

0 ActiveHinge I3 0 BLUE

0 FixedBrick F3 0 BLUE

2 ActiveHinge I4 0 BLUE

0 FixedBrick F4 0 BLUE

0 ActiveHinge I5 0 BLUE

0 FixedBrick F5 0 BLUE

3 ActiveHinge I6 0 BLUE

0 FixedBrick F6 0 BLUE

0 ActiveHinge I7 0 BLUE

0 FixedBrick F7 0 BLUE

Listing 1: Genotype example specifying the blue Spider in Figure 9. See text for details.

All of the parts making up the spider are blue. The colours are irrelevant to the operation
of the robot but they are a useful tool to visualize which parts of the offspring come from
which parent.

0 CoreComponent E0 0 GREEN

0 ActiveHinge I0 1 GREEN

0 FixedBrick F0 0 GREEN

0 ActiveHinge I1 1 GREEN

0 FixedBrick F1 0 GREEN

1 ActiveHinge I2 1 GREEN

0 FixedBrick F2 0 GREEN

2 ActiveHinge I3 3 GREEN

0 FixedBrick F3 0 GREEN

1 ActiveHinge I4 1 GREEN

0 FixedBrick F4 0 GREEN

44



3 ActiveHinge I5 3 GREEN

0 FixedBrick F5 0 GREEN

Listing 2: Genotype specifying the green Gecko.

0 CoreComponent E0 0 WHITE

0 ActiveHinge I0 1 GREEN

0 FixedBrick F0 0 GREEN

0 ActiveHinge I1 1 GREEN

0 FixedBrick F1 0 GREEN

1 ActiveHinge I2 1 GREEN

0 FixedBrick F2 0 GREEN

2 ActiveHinge I3 3 GREEN

0 FixedBrick F3 0 GREEN

1 ActiveHinge I4 3 GREEN

0 FixedBrick F4 0 GREEN

3 ActiveHinge I5 0 GREEN

0 ActiveHinge I6 1 GREEN

0 FixedBrick F5 1 BLUE

0 ActiveHinge I7 1 BLUE

0 FixedBrick F7 0 BLUE

Listing 3: Genotype specifying the offspring of the green Gecko and the blue Spider.

C Controller

The controller represents a set of splines which altogether form a gait policy for particular
morphology. Each spline within this set specifies the angular positions of a single actuator
over a certain amount of time. With an update function, robot can send signal to reposition
its actuators based on a spline value in certain time point.

A cyclic spline is a mathematical function that is defined using a set of n control points.
Each control point is defined by (ti, αi) where ti represents time and αi the corresponding
value. ti ∈ [0, 1] is defined as

ti =
i

n− 1
, ∀i = 0, . . . , (n− 1) (2)

and αi ∈ [0, 1] is freely defined.
To ensure cyclic splines, an additional control point (tn, αn) is defined that by definition

has the same value as the first control point (α0 = αn). These control points are then used

45



to interpolate a cubic spline with periodic boundary conditions using GSL 4 dedicated C
functions. Using GSL it is possible to query a spline for a different number of points than it
was defined with, an example is shown in Figure 17.

D Learner

The algorithm creates the initial policy with as many splines as there are active hinge mod-
ules, and each spline is initialised to have two control points. These control points are
initialised at 0.5 and then perturbed using Gaussian noise. The algorithm then enters an
evaluation-adaptation loop to refine the policy, until the stopping condition is reached. A
ranking of k best policies encountered so far is kept to inform the adaptation of the current
policy.

Adaptation consists of three components: spline size increase, exploitation and explo-
ration. The spline is gradually refined by incrementing the number of control points period-
ically as proposed in [38] depending on the start and end sizes of the splines and the number
of evaluations. The size increase amounts to incrementing the number of control points n
that define the spline by 1. For the k best archived policies this new point is interpolated
from their definition. In the exploitation step, the current parameters are adapted based on
the values of the k best policies. In the exploration phase policies are adapted by applying
Gaussian perturbation to the policy resulting from exploitation. Over the course of the run
the variance σ2 is diminished which decreases exploration and increases exploitation. The

4http://www.gnu.org/software/gsl/

46

http://www.gnu.org/software/gsl/


pseudo-code for the algorithm, as defined in [26], is displayed in Algorithm 2.

Algorithm 2: RL PoWER

1 initialisation;
2 policy ← initialisation;
3 evaluate(policy);
4 while evaluation < total evaluations do

/* Update the ranking of k best policies */

5 ranking.insert(policy);
6 if ranking.size > k then
7 ranking.remove worst();
8 end

/* Spline size increase */

9 if evaluation mod increase delta = 0 then
10 spline size ← spline size + 1;
11 reinterpolate all(ranking);
12 reinterpolate(policy);

13 end
/* Exploitation */

14 rewards ← 0;
15 weighted total ← 0;
16 for p in ranking do
17 rewards ← rewards + p.reward;
18 weighted parameters ← p.reward * (policy.parameters - p.parameters);
19 weighted total ← weighted total + weighted parameters;

20 end
21 next policy.parameters ← policy.parameters + weighted total / (rewards + ε);

/* Exploration */

22 next policy.parameters ← next policy.parameters + normrnd(0,sqrt(variance));
23 policy ← next policy;
24 variance ← variance * variance decay;
25 evaluate(policy);

26 end

The reward awarded to a controller is calculated as:

R =

(
100

√
∆2

x + ∆2
y

∆t

)6

(3)

47



where ∆x and ∆y is the displacement over the x and y axes measured in meters and ∆t the
evaluation time, as in [38].

Each controller is evaluated for 30 seconds. The evaluation period is determined as a
good ratio between a battery consumption and a evolved gait distinction; if the evaluation
period is shorter, more gaits could be evaluated with the current battery capacity, but it
would make harder to distinguish a good gait from a bad one.

The RL PoWER parameter settings were taken from [9] and summarised in Table 1.
A new spline is generated by taking the current spline, adding a Gaussian perturbation

to every control point with mean 0 and variance σ2(t) and then adding a weighted sum of
the best k splines in ranking with weights wi defined as

wi =
fi

ε+
∑k

j=1 fj
,

where fi is the fitness of the ith gait in ranking and ε is a parameter to avoid division by 0
and is set to 10−10.

48


	Introduction
	Related Work
	Robot Evolution in Real-Time and Real-Space
	System Design

	Design Decisions and Exploratory Experiments
	Robot Design
	On-line Evolution of Morphology
	On-line Learning

	Implementation in Hardware
	Morphogenesis
	Infancy
	Localisation
	Learning

	Mature Life
	Selection and Reproduction
	Mating protocol

	The Life Cycle

	Discussion and possible extensions
	Concluding Remarks
	Genome recombination and mutation
	Internal description of robot morphologies
	Controller
	Learner

