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Abstract—Deep brain stimulation (DBS) is a well-established
method for symptomatic treatment of Parkinson’s disease and es-
sential tremor. Adaptive deep brain stimulation has the potential
to surpass the performance of conventional DBS, providing more
accurate symptom suppression, better control of stimulation-
induced side effects, and longer battery life. While multiple
controllers have been proposed and successfully tested in compu-
tational models as well as in patients, even the simple methods still
require parameter tuning and currently there is there is no known
optimal way of setting the parameters of these controllers. In this
work, we have applied an iterative feedback tuning (IFT) method
to set proportional-integral controller parameters to values that
minimize a specific performance metric. The metric used is based
on the residual local field potential (LFP) beta power and the
stimulation intensity, rewarding maximum beta suppression with
minimal stimulation intensity. We have tested this method in a
computational model of parkinsonian basal ganglia, capable of
modelling the pathological beta activity and simulating the LFP.
We have shown that the controller parameters are updated in
accordance with the predefined goals and that the behaviour of
the controller is dependent on the relative importance ascribed
to the beta power and the stimulation intensity.

Index Terms—deep brain stimulation, adaptive DBS, iterative
feedback tuning

I. INTRODUCTION

Closed-loop, or adaptive deep brain stimulation (aDBS) has
been proposed as an approach to augment the efficacy of con-
tinuous DBS, promising better control of disease symptoms,
longer battery life and reduced risk of stimulation-induced side
effects. In contrast to conventional DBS in which stimulation
parameters remain fixed over time, in aDBS the stimulation
parameters (most commonly amplitude and frequency) are
updated in real time, based on the measurement of a biomarker
that provides information on the patient’s condition in order
to better fit the current needs of the patient.

While aDBS is not yet used in clinical practice, a number of
studies have been conducted to trial aDBS over short durations
in patients with Parkinson’s disease. The methods used have
been based on the basal ganglia β-band (13-30 Hz) activity
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[1], [2], which correlates with the parkinsonian symptoms of
bradykinesia and rigidity [3], or tremor power measured with
a wrist-mounted accelerometer [4]. The approaches tested to
date fall into three broad categories: on-off control, where the
stimulation is applied when the biomarker exceeds a threshold
value [1], [5]; proportional control, where the stimulation
amplitude is proportional to the value of the biomarker [2],
[6]; and ramping/dual-threshold control, where the amplitude
is adjusted with a preset rate of change, depending on value
of the biomarker in relation to two thresholds [4], [7].

In addition to these clinically tested methods, computa-
tional studies of aDBS for Parkinson’s disease have explored
a variety of stimulation approaches. Unconstrained by the
limitations of the implanted devices, these methods range from
simple proportional control [8], to computationally expensive
Bayesian optimisation algorithms [9], [10].

The proposed closed-loop methods obviate the need to
directly set the stimulation parameters but introduce another
set of parameters, the choice of which influences the perfor-
mance of the control setup. A good example of this is the
case of the proportional-integral (PI) controller, a variant of
the proportional-integral-derivative (PID) controller. The PI
controller can successfully be used to suppress pathological β
oscillations in computational models of cortico-basal ganglia
loop [11] but inappropriately chosen parameters will result
in either unsatisfactory suppression or overstimulation. To
address this issue, several methods have been proposed in
a ”dual-loop” paradigm, where adaptation of the stimulation
parameters is performed by an internal PI controller, while
the parameters of the PI controller are updated by an external
controller, based on a chosen performance metric [9], [12].

In this work we apply iterative feedback tuning (IFT), to op-
timize the parameters for PI control of DBS. IFT was proposed
in [13] for linear systems and extended to nonlinear systems in
[14]. It provides a systematic way based on gradient estimation
to adjust parameters of any linear controller, using signals
measured from the system during stimulation to minimize a
predefined cost function, and is simple enough to implement in
embedded devices [15]. We test the implementation of IFT in



Fig. 1. The closed loop system.

a computational model of the cortico-basal ganglia loop, that
exhibits pathological β oscillations, similar to those present
in patients suffering from Parkinson’s disease, and show that
the controller parameters are updated in accordance with the
predefined control objectives.

II. METHODS

The cortico-basal ganglia model and the controller are
connected in a closed loop (Fig.1). The IFT PI controller C
is described in detail in Section II-A and G is the model
described in Section II-B. The signal r is the controller
reference signal, u is the controller output, v is the disturbance
and y is the system output, i.e. the value of the biomarker.

A. Iterative feedback tuning

The objective is to minimize a cost function

J(ρ) =
1

2N
E

[
N∑
t=1

ỹ[t; ρ]2 + λu[t; ρ]2

]
, (1)

where ρ encodes the parameters of the controller, t represents
each discrete time point, u[t] is the controller output (stimu-
lation amplitude), ỹ[t] = y[t] − r[t] for the measured output
of the system y[t] and the reference signal r[t], N ∈ N is
the signal length, and λ ∈ R≥0 is a scaling parameter. This
function represents a weighted sum of the mean squared errors
of the biomarker and the control input.

If J(ρi) was known for a given parameter vector ρi, we
could find a local optimum by iterating

ρi+1 = ρi − γiR
−1
i

∂J

∂ρ
(ρi), (2)

where γi > 0, and Ri is a positive-definite matrix for all i ∈ N.
Since J(ρi) is not known a priori, it has to be estimated, as
shown in [16]:
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where
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The controller C is a PI controller, defined in the z-domain
with backward Euler approximation as

C(z; ρ) = Kp

[
1 +

Ts

Ti(1− z−1)

]
, (6)

where ρ = (Kp, Ti)
T is a parameter vector with Kp, Ti ∈ R≥0

and Ts > 0 is the controller sampling time. Next, we compute
the transfer functions needed for the estimators (4) and (5)

1

C

∂C

∂ρ
(ρ) =


1

Kp

−Tsz

Ti(Tiz − Ti + Tsz)

 . (7)

Following [16], the signals y2 and u2 are obtained as follows:
• set the reference signal to the desired value r = yd and

record N samples of the controller output signal u1 and
the system output y1 = ỹ = y − r,

• set r = y1 and record N samples of the controller output
u2 and system output y2,

• use the measured signals y1, y2, u1, u2 in (3)-(5) to obtain
the estimate of the gradient of the cost function J ,

• update the controller parameters as in (2).
This process can be performed for a predefined number of
iterations, until a convergence criterion is met, or indefinitely,
depending on the design goals. For the purposes of the simu-
lation, the transfer function (7) was expressed in a difference
equation form and applied to equations (4)-(5).

B. Computational model of cortico-basal ganglia loop

To test the application of IFT to identify controller param-
eters suitable for suppression of pathological oscillations in
the basal ganglia, we used a computational model, proposed
in [11]. This model exhibits β oscillations akin to those
observed in parkinsonian patients, and simulates the local field
potentials (LFP) as well as DBS stimulation that suppresses the
β activity. The model is implemented in Python using PyNN
and runs on the NEURON simulator with 0.5 ms time step.

The model was updated to utilize NEURON and PyNN’s
parallelization capabilities. The simulations presented in this
paper were run with 12 threads.

The controller updates the stimulation parameters every
Ts = 20 ms based on the system output y and the reference
signal r. The output y is obtained by bandpass-filtering the
LFP in the high β (21-29 Hz) range (4th order Chebyshev
Type I filter, 0.5 dB ripple) and calculating the average rectified
value of the filtered signal over the 2000 ms preceding the
controller call.

III. RESULTS

A. Estimate of the cost function J

To obtain an approximate value of the cost function J for
any given set of parameters, we ran the simulation with a PI
controller with fixed Kp and Ti for a range of values between
0 and 2. The simulation was first advanced 6 s to allow the
system settle to the steady state. The PI controller was then
applied to the model for 12 s and we estimated the mean square
error of the β activity ỹ2 and the square of the stimulation
amplitude u2 over the final 6 s of the simulation.

The performance of the model for different combinations of
controller parameters are presented in Fig.2. The beta power
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Fig. 2. Components of the cost function J estimated from simulations with fixed-parameter PI controller. The simulations were run for 6 seconds to reach the
steady state and then for 12 seconds with the controller on. The values for every parameter pair were obtained by averaging over the final 6 seconds of the
simulation and then the plots were created by linearly interpolating between the obtained values. (a) Mean square error of the beta amplitude, corresponding
to the y2 term. (b) Squared stimulation amplitude, corresponding to the u2 term. (c) Cost J =

∑
i y[i]

2 + λu[i]2 with λ = 3× 10−9.

(Fig.2a) was generally well-suppressed with sufficiently high
values of Kp and Ti. On the other hand, the stimulation power
(Fig.2b) increased steeply with increasing proportional gain
Kp and was reduced by increasing the integral time constant
Ti. Since the two terms have opposing effects, it is clear that
the choice of the λ parameter is critical in determining the
behaviour of the controller. A cost function with a high λ will
push the controller towards lower Kp values to minimize the
stimulation amplitude, while a low λ will cause Kp to increase
to achieve better suppression of β power.

Fig.2c presents the cost function with λ = 3× 10−9.

B. Adaptation of parameters through iterative feedback tuning

We then applied the IFT controller, described in Section
II-A, to the same model with the same initial conditions to
tune the PI controller parameters automatically.

The results of running the IFT controller for two different
values of λ are shown in Fig.3. The simulations were run for
60 s, with the signal length N = 125, corresponding to 2.5 s,
and γ = 0.05. The background shows the approximated cost
function for a given value of λ and the arrows represent the
change of the PI controller parameters.

When λ = 0 (Fig.3a), the algorithm minimizes the β oscil-
lation magnitude, so it moved towards the higher values of Kp.
Initial controller parameter values of Kp = 0.05, Ti = 1.30
were updated to the final values of Kp = 0.96, Ti = 1.29.

When λ = 1 (Fig.3b) and the cost function J is dominated
by the u2 part, representing the stimulation amplitude, the
algorithm increased the value of Ti and reduced the value
of Kp. Initial values for this simulation were Kp = 1.00,
Ti = 0.20 and the final values were Kp = 0.17, Ti = 1.20.

IV. DISCUSSION

A PI controller with well-tuned parameters is capable of
reducing the β power in models of parkinsonian brain activity,
while also reducing the stimulation intensity compared to con-
tinuous stimulation. However, identifying effective controller
parameters is a nontrivial problem.
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Fig. 3. Results of IFT application to a PI controller with two different λ
values. (a) When λ = 0, the parameters are increased in the direction of
higher Kp, to maximize beta suppression. (b) When λ = 1, the IFT process
pushes the parameters towards higher values of Ti and lower values of Kp

to minimize the stimulation power.



Here an iterative method is proposed to tune the parameters
in accordance with any specified cost function. The cost
function used here is based on the mean square error of the
β amplitude and stimulation amplitude. These two parts of
the cost function introduce competing requirements on the
values of the controller parameters. The suppression of β
requires higher values of Kp and lower values of Ti, while
the reduction of stimulation intensity requires lower values of
Kp and higher values of Ti. The method proposed here is
capable of finding an effective set of parameters, given those
competing constraints, with the final value depending on the
relative weighting given to the two components.

Methods that automatically adjust the controller parameters,
such as the IFT presented here, have the potential to simplify
the implementation and deployment of aDBS, replacing a set
of parameters that is hard to tune (the gain and time constant of
the PI controller) by a set of parameters with a more intuitive
meaning (relative importance of β intensity and stimulation
intensity and the signal length). Moreover, these methods have
the potential to respond to changes in the underlying activity,
as the disease progresses or the electrical impedance of the
tissue surrounding the electrode changes, altering the fitness
landscape and diminishing the efficacy of DBS treatment.

Methods of low computational complexity, like the IFT,
could be implemented in existing hardware, as opposed to
methods relying on machine learning to generate the estimate
of the cost function [10]. While the computational burden
can be offloaded to the cloud and the parameter update can
be performed remotely, such solutions have additional re-
quirements in terms of device connectivity, which additionally
raises issues related to privacy and security.

While IFT performs well for the conditions examined,
further research is required not only to better understand the
effect of IFT parameters on controller performance but also
to compare this approach with other proposed aDBS methods,
such as model-adaptive control [17]. Such comparative studies
would serve to illuminate the relative strengths and weaknesses
of these methods and their domains of applicability.

Moreover, the presented model does not include any in-
formation about the muscle activity, the non-motor effects of
stimulation and the stimulation-induced side effects. A simple
PI controller, even with the advantage of IFT, would not be
able to address all these issues.

There is a gap between the simple methods of brain stim-
ulation, that have been tested in clinical trials of aDBS, and
more advanced methods proposed in computational studies.
The ability of IFT to adjust the controller parameters based
on a prescribed cost function obviates the need for costly and
time-consuming parameter tuning. Moreover, its low compu-
tational complexity makes it suitable for testing in existing
hardware, allowing for significant increase in capabilities of
aDBS devices without significant technological advances.
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